Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
extra time plaster additive

In the demanding world of construction finishes, controlling time is paramount. A plaster retarder serves as a crucial chemical admixture specifically designed to decelerate the setting reaction of plasters, primarily those based on gypsum. This deliberate delay is far from a mere convenience; it's a fundamental requirement for achieving high-quality, durable, and aesthetically pleasing surfaces. Both gypsum retarder additives and broader plaster retarder formulations work by interfering with the crystallization process of calcium sulfate dihydrate (the final set gypsum product). They adsorb onto the surface of hemihydrate particles (the main component of plaster) or complex with calcium ions in solution, hindering the nucleation and growth of the dihydrate crystals that form the hardened structure. This controlled intervention transforms the plaster from an unworkable paste into a manageable material, granting applicators the vital window needed for precise placement, thorough consolidation, intricate detailing, and achieving a truly smooth finish before the irreversible hardening occurs. Key Advantages Delivered by Gypsum Plaster Retarder The strategic incorporation of a gypsum plaster retarder unlocks a cascade of significant benefits that directly elevate the application process and the final result: Extended Workability and Application Window: This is the most immediate and critical benefit. Without a gypsum retarder , standard gypsum plasters can begin stiffening within minutes, forcing applicators into a rushed, often compromised process. A plaster retarder reliably extends the plastic state, often by 30 minutes to several hours depending on dosage and type. This allows tradespeople ample time for large batch mixing, transporting material, meticulous application over larger areas, complex mold work, detailed ornamentation, and careful finishing without the panic of the mix setting up prematurely. The pressure is removed, enabling focus on craftsmanship. Enhanced Finish Quality and Reduced Defects: Rushing plaster application is a primary cause of surface imperfections. A gypsum plaster retarder facilitates smoother troweling, easier leveling, and superior compaction. This directly minimizes the risk of air pockets, surface roughness, tool marks, and cold joints (visible lines where fresh plaster meets partially set plaster). The extended open time allows for re-troweling to achieve the desired ultra-smooth surface as the plaster begins to firm up, leading to a visibly superior finish requiring less remedial sanding. Improved Sag Resistance on Vertical and Overhead Surfaces: While extending workability, specific gypsum retarder formulations can also enhance the plaster's cohesion and thixotropy (its ability to become less viscous under shear stress, like troweling, but thicker when static). This improved body helps the plaster cling to vertical walls and ceilings during the extended working period, significantly reducing sagging or slumping before initial set occurs. This is vital for achieving uniform thickness on walls and preventing drooping on ceilings. Optimized Performance in Challenging Conditions: High ambient temperatures dramatically accelerate the setting of gypsum plaster, making summer application particularly difficult. A gypsum plaster retarder becomes indispensable in hot weather, counteracting the accelerated set and maintaining a viable working time. Similarly, when placing thick layers or using plaster in complex forms where heat buildup can occur internally, the retarder ensures uniform setting throughout the mass. Increased Flexibility for Large Projects and Complex Work: For large-scale plastering jobs, consistent workability across multiple batches is essential. A reliable plaster retarder ensures uniformity, preventing earlier batches from setting before later ones are applied. In restoration work or intricate decorative plastering involving molds and casts, the extended time provided by the retarder is non-negotiable for achieving accurate replication and detailed artistry. Reduced Material Waste: The pressure of rapid setting often leads to mixed batches hardening before they can be fully used. By significantly extending the usable life of the mixed plaster, a gypsum retarder directly reduces this form of costly material waste. Implementing Gypsum Retarder Effectively in Practice Realizing the full benefits of a gypsum retarder requires understanding its practical use: Types and Mechanisms: Common gypsum retarder chemicals include organic acids (citric acid, tartaric acid, their salts), modified carbohydrates, and certain protein derivatives. Each interacts slightly differently with the gypsum crystallization process. Liquid retarders offer ease of dosage but require careful water adjustment; powdered retarders are common in pre-mixed plasters and require thorough dry blending. Precision Dosage is Critical: The effectiveness of a plaster retarder is highly dosage-dependent. Too little provides insufficient worktime extension; too much causes severe, potentially indefinite retardation, weak final strength, surface dusting, and efflorescence risks. Manufacturers provide specific dosage ranges , which must be followed meticulously. Factors influencing optimal dosage include plaster composition, desired set time extension, water temperature, and ambient conditions. Always conduct small batch tests when changing retarder type, brand, or plaster source. Consistent Mixing and Dispersion: For powdered retarders, especially in site-mixed applications, thorough and uniform blending with the dry plaster powder before adding water is essential. Poor dispersion leads to localized areas of severe retardation and inconsistent setting. Adequate mixing time after water addition ensures the retarder dissolves and interacts effectively. Water Quality and Temperature Awareness: Hard water (high in calcium/magnesium) can sometimes interfere with certain retarders. More critically, water temperature significantly impacts set time. Using warm water accelerates the set, potentially requiring slightly higher retarder dosage; cold water slows the set. The gypsum plaster retarder dosage needs to be considered relative to the actual mixing water temperature. Environmental Considerations: While primarily focused on temperature's effect on set time, also consider humidity and airflow. Low humidity and high airflow increase evaporation, which can superficially stiffen the plaster surface even while the bulk is still chemically plastic. This might be mistaken for setting but is actually just drying. Comparing Retarder Needs: Gypsum and Other Plasters While gypsum retarder technology is highly developed due to gypsum's inherent rapid set, the need for controlled workability extends to other plaster types, though the mechanisms differ: Cement Plasters/Renders: Cement-based materials set primarily through hydration, a much slower process than gypsum crystallization. Retarders for cement (often lignosulfonates, carbohydrates, or synthetic polymers) work by delaying the hydration reactions. The focus is less on preventing flash set and more on extending workability for large pours, preventing cold joints in hot weather, or allowing time for intricate texturing. The required extension time is usually longer than with gypsum, and dosages differ significantly. A general plaster retarder label might encompass both, but specific formulations are optimized for the binder chemistry. Lime Plasters: Traditional lime plasters set very slowly through carbonation. Modern hydraulic limes set faster via hydration. Retarders for hydraulic lime plasters function similarly to cement retarders. The primary need arises in hot weather or for complex applications. Pure lime plasters rarely need chemical retardation. Specialty Plasters: Veneer plasters, gauging plasters , and synthetic resin-based plasters all have specific setting mechanisms. Each may utilize bespoke retarders tailored to their chemistry. The gypsum plaster retarder concept is most directly applicable to products where gypsum is the primary or sole binder controlling the set. FAQs about Gypsum Plaster Retarder How much extra working time can I expect from a plaster retarder? The extension provided by a plaster retarder varies significantly based on the specific retarder type, its dosage, the gypsum plaster composition itself, water temperature, and ambient conditions. Potent organic acid retarders like citrates can easily double or triple the initial working time at moderate dosages. Precise control requires consulting the retarder manufacturer's data sheets and conducting small-scale trial batches under anticipated jobsite temperatures to determine the exact dosage needed for the desired workability window. Never assume a fixed extension time. Can I add more water to extend workability instead of using a gypsum plaster retarder? Absolutely not. Adding excess water beyond the mix design requirements severely compromises the hardened plaster. It increases porosity, drastically reduces final strength and durability, promotes excessive shrinkage cracking, and leads to surface dusting. A gypsum retarder extends workability chemically without altering the critical water-to-plaster ratio, preserving the integrity and performance of the final product. How does a gypsum retarder affect the final strength? When used at the correct dosage, a quality gypsum plaster retarder has minimal negative impact on the ultimate compressive and flexural strength of the fully cured gypsum. It primarily delays the setting reaction but allows full crystallization to occur eventually. However, significant overdosing can lead to incomplete crystal formation and weaker, more porous structures, resulting in reduced strength. Proper dosage is key to maintaining strength while gaining workability. Is a gypsum plaster retarder necessary for all applications? No, it's application-dependent. For small repairs, areas easily finished quickly, or in consistently cool conditions, the natural set time of the plaster might be sufficient. However, for large ceiling or wall areas, complex shapes, intricate details, machine application, hot weather work, or projects requiring consistent batch-to-batch workability over hours, a plaster retarder is essential for achieving quality results efficiently and minimizing waste. Can I use citric acid directly as a gypsum retarder? While citric acid is a common active ingredient in many commercial gypsum retarder products, using pure food-grade citric acid is not recommended. Commercial retarders are precisely formulated blends that often include dispersants, anti-foamers, and other modifiers to ensure consistent performance, predictable retardation, good mixability, and minimal side effects like excessive air entrainment or surface blemishes. Pure citric acid can be difficult to dose accurately at the very low levels required and may lead to inconsistent results or unwanted effects. Understanding the different types of retarders, their precise dosage requirements, and their optimal use conditions is crucial for formulators and applicators alike. Whether labeled broadly as a plaster retarder or specifically as a gypsum plaster retarder , these chemical tools are indispensable for anyone committed to achieving the highest standards in gypsum-based finishes, proving that in the art and science of plastering, controlling time is synonymous with controlling quality.

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • powder rubber

    In the pursuit of sustainable and renewable materials, few substances hold as much promise as fibre made from wood pulp . As the world turns away from petroleum-based synthetics like polyester, more attention is being given to bio-based alternatives that are not only environmentally friendly but also high-performing. Among these alternatives, cellulose-based fibers derived from wood pulp stand out for their biodegradability, comfort, and versatility. These fibers are already widely used in textiles, hygiene products, packaging, and even medical applications. But what exactly is fibre made from wood pulp ? How is it connected to cellulose wood pulp ? And what does the extraction of cellulose from wood involve? This article explores the answers to these questions and highlights the significance of cellulose in shaping a greener future. Is Cellulose Wood Pulp? Understanding the Relationship A common question in the bio-materials industry is whether cellulose is wood pulp . The short answer is: not exactly, but they are intimately related. Cellulose is a natural polymer and the main structural component of plant cell walls. In trees, cellulose fibers are bundled with other components such as lignin and hemicellulose. To access cellulose in a usable form, it must be separated from these other substances. Wood pulp refers to the raw, fibrous material produced by mechanically or chemically breaking down wood. It contains a high percentage of cellulose, typically between 40% and 60%, depending on the type of wood and the processing method. Therefore, cellulose is not the same as wood pulp , but wood pulp is a major source of cellulose . Purified wood pulp, especially after the removal of lignin and other impurities, is often referred to as cellulose pulp or dissolving pulp when destined for fiber production. This purified cellulose can then be transformed into regenerated fibers like viscose, lyocell, or modal, which are used in the textile industry. Fibre Made from Wood Pulp: A Renewable Textile Revolution The use of fibre made from wood pulp in textiles is nothing new, but recent advances in green chemistry and growing concerns over environmental sustainability have given these fibers renewed attention. Common regenerated cellulose fibers such as rayon , viscose , lyocell , and modal are all examples of wood-based fibers created through various processing techniques. These fibers offer numerous benefits. They are soft to the touch, highly breathable, and moisture-absorbent, making them ideal for clothing, home textiles, and hygiene products. Unlike synthetic fibers, they are also biodegradable, returning to nature at the end of their life cycle without releasing harmful microplastics. Modern technologies, particularly the closed-loop process used to produce lyocell, have further enhanced the eco-friendliness of these fibers. These methods reduce chemical waste, improve worker safety, and minimize water and energy consumption during manufacturing. As a result, fibre made from wood pulp is now regarded as one of the most sustainable choices for eco-conscious brands and consumers. Extraction of Cellulose from Wood: From Tree to Textile The extraction of cellulose from wood is a sophisticated process that involves several stages. The objective is to isolate cellulose from the other components in wood, mainly lignin and hemicellulose. Depending on the end use of the cellulose—paper, textiles, food additives, or pharmaceuticals—the level of purity required can vary. The most common methods for extracting cellulose include: Mechanical pulping , where wood chips are ground to release the fibers. This process retains much of the lignin and is mainly used in paper production where high whiteness is not necessary. Chemical pulping , particularly the kraft and sulfite processes, involves treating wood chips with chemicals that dissolve lignin and hemicellulose, leaving behind cellulose fibers. The result is a stronger and more chemically pure pulp. Bleaching and purification , which further remove residual lignin and other impurities to produce high-purity cellulose pulp . This purified pulp is ideal for textile fiber production or specialty applications. In the case of producing viscose or lyocell, the purified pulp is dissolved in specific solvents. For example, in the lyocell process, the cellulose is dissolved in N-methylmorpholine N-oxide (NMMO) , a non-toxic, recyclable solvent. The resulting solution is extruded through spinnerets to form continuous fibers that can be spun into yarn and woven into fabric. This method of extracting and converting cellulose into fiber exemplifies how fibre made from wood pulp transitions from a forest resource into a high-performance material suitable for modern textiles. Applications of Cellulose Wood Pulp Beyond Textiles Although fibre made from wood pulp is predominantly used in textiles, the applications of cellulose wood pulp extend far beyond fashion. In the food industry, cellulose is used as a thickener and stabilizer in processed foods, while in the pharmaceutical sector, it serves as a binder and filler in tablets. Cellulose derivatives, such as carboxymethyl cellulose (CMC) and hydroxypropyl methylcellulose (HPMC) , are vital in creating biodegradable films, capsules, and coatings. In the world of packaging, cellulose pulp is being harnessed to create compostable alternatives to plastic. Films made from regenerated cellulose are already being used in food packaging due to their transparency, strength, and biodegradability. As global regulations tighten around single-use plastics, cellulose-based packaging is positioned to become a game-changer. Construction and insulation industries are also exploring the use of cellulose fibers for thermal and acoustic insulation. These fibers are lightweight, non-toxic, and derived from renewable sources, aligning perfectly with green building principles. The adaptability of cellulose wood pulp across industries reinforces its role as one of the most valuable and sustainable raw materials available today. The Environmental Impact of Using Fibre from Wood Pulp One of the primary drivers behind the shift toward fibre made from wood pulp is its reduced environmental footprint compared to synthetic alternatives. Synthetic fibers like polyester are derived from fossil fuels and contribute significantly to greenhouse gas emissions and microplastic pollution. In contrast, cellulose fibers originate from renewable forests and can biodegrade naturally at the end of their use. Moreover, responsible forestry practices and certification systems such as FSC (Forest Stewardship Council) and PEFC (Programme for the Endorsement of Forest Certification) ensure that the wood used to make pulp is harvested sustainably, preserving biodiversity and protecting ecosystems. Innovations in closed-loop production, particularly in lyocell manufacturing, have drastically reduced chemical usage and wastewater output. These advancements demonstrate that fibre made from wood pulp not only performs well but also aligns with principles of environmental stewardship and circular economy. Xylem Fiber FAQs Is cellulose wood pulp the same as fibre? Not exactly. Cellulose is the primary component of wood pulp , and fiber can be made from cellulose after it is extracted and processed. While wood pulp is the raw material, fiber is the finished or intermediate product that can be spun into textiles. What types of fiber are made from wood pulp? Common fibers made from wood pulp include viscose , rayon , modal , and lyocell . These are all examples of regenerated cellulose fibers used in clothing, home textiles, and hygiene products. How is cellulose extracted from wood? Cellulose is extracted through mechanical or chemical pulping, followed by bleaching and purification to remove lignin and hemicellulose. The resulting purified cellulose is then ready for use in textile production or other industries. Is fibre made from wood pulp biodegradable? Yes, fibers derived from wood pulp are biodegradable. They decompose naturally in soil or composting environments, unlike synthetic fibers that persist as microplastics in the environment for decades. Why is fibre made from wood pulp considered sustainable? Fibre from wood pulp is derived from renewable sources and can be manufactured using environmentally responsible processes. It is biodegradable, has a lower carbon footprint than synthetic fibers, and supports the global shift toward sustainable materials.

  • química de la madera y la celulosa

    Hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) are two of the most widely used cellulose derivatives in various industries, including pharmaceuticals, food production, and construction materials. Understanding the distinctions between these two compounds can significantly enhance product formulation and application efficiency . HPMC and CMC share a common cellulose backbone, but the chemical modifications and substituted groups differentiate their properties and functionalities. Hydroxypropyl methylcellulose is modified by the addition of methoxy and hydroxypropoxy groups. These chemical modifications impart valuable properties like thermal gelation, water retention, and film-forming capabilities, making HPMC ideal for use in tile adhesives, pharmaceuticals, and food products. On the other hand, carboxymethyl cellulose is primarily characterized by the carboxymethyl groups attached to the cellulose backbone. This gives CMC its high viscosity, excellent water solubility, and emulsifying properties. Such characteristics make CMC particularly useful as a thickener and stabilizer in sauces, dressings, and other culinary products as well as in personal care items like toothpaste and lotions. In terms of application in the pharmaceutical industry, HPMC is favored due to its high thermal gelation properties and its ability to function as a release rate controller in oral medicines. HPMC’s safety and inertness make it an excellent choice for use in sustained-release tablet formulations. This ability to effectively modulate drug release profiles significantly contributes to patient compliance and therapeutic efficacy. Furthermore, HPMC’s film-forming capabilities are essential in the coating of tablets, imparting stability and aesthetics while ensuring functionality. Conversely, CMC is instrumental in the formulation of liquid pharmaceuticals where thickening and stability are required. Its high viscosity makes it an ideal candidate for suspensions and liquid syrups, where even distribution and homogeneity of the active ingredient are crucial. difference between hpmc and cmc In the food industry, HPMC proves to be an invaluable tool where thermal gelation and fat reduction are desired without compromising texture. For example, in low-fat ice creams, HPMC stabilizes the emulsion and provides a creamy texture. CMC, however, is often chosen for baked goods to enhance mouthfeel and improve moisture retention, vital for shelf-life extension. The environmental impact and biodegradability of these cellulose derivatives also play a critical role in their selection for specific applications. Both HPMC and CMC are biodegradable and non-toxic, which align with the growing trend toward environmentally friendly and sustainable products. However, the production processes and raw material sourcing can vary, which may influence the ecological footprint of each product. Professionals in construction also leverage the unique strengths of these compounds. HPMC's ability to retain water and provide smooth application makes it ideal for cement and gypsum-based products, improving workability and performance under various environmental conditions. Meanwhile, CMC’s excellent rheological properties are appreciated in the suspension and stability of paints and coatings. In summary, while HPMC and CMC are both cellulose-derived, their unique chemical structures provide distinct advantages across different sectors. HPMC excels in applications requiring gelation, film formation, and controlled release, whereas CMC is preferred for its viscosity, solubility, and stabilizing properties. Selecting between HPMC and CMC should be guided by specific product requirements, industry standards, and desired characteristics, ensuring that each application achieves optimal performance. Such informed decisions not only enhance product quality but also build trust and credibility, aligning with the modern consumer's demand for transparency and reliability.

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP